Lynx X-ray Grating Spectrometer

Ralf Heilmann¹ & Randy McEntaffer²

IWG Co-chairs and Grating Leads, on behalf of the IWG Grating Team

¹MIT Kavli Institute for Astrophysics and Space Research

²Penn State University

XGS Science topics/requirements

Diffuse baryons

- · Census, mapping, metallicity in cosmic web
- Content in galactic halos
- Milky Way rotational and turbulent velocity of hot halo gas

Black holes

- Kinematics and physical characteristics of warm absorbers near SMBHs
- XRB and ULX spectroscopy, with some time resolution

Stellar atmospheres

- Photosphere absorption of neutron stars in GCs and SNR
- Coronae and flares
- Young star accretion
- Winds around BHs (XRBs & ULXs)
- Require R > 5000, effective area ~4000 cm²
 soft X-rays: 0.2-2.0 keV
- These require further guidance from STDT
- Can be addressed by Off-Plane Grating (OPG) and Critical Angle Transmission (CAT) grating technologies

Grating Spectrometer Overview

- Removable grating arrays aft of mirrors
- Fixed readout array in focal plane
- Blazed gratings; only orders on one side are utilized (smaller readout).
- Only fraction (50%) of mirrors is covered: "sub-aperturing" boosts spectral resolution.
- No low energy high-resolution spectroscopy on Athena

CAT and OPG Spectrometers: Commonalities

- Blazing into higher orders/larger angles: Increased resolving power.
- Maximum resolving power: (Dispersion distance or "throw")/(PSF plate scale projected onto dispersion axis).
- Sub-aperturing boosts resolving power.
- Aberrations reduce resolving power.
- High diffraction efficiency over broad band due to angles of grazing incidence onto grating surfaces being below the critical angle.
- Band limited on short wavelength side by critical angle.
- Different orders overlap spatially: detectors sort orders.
- Detector pixels oversample PSF.
- Tradeoff between short wavelength cutoff and resolving power.

OPG Diffraction Efficiency

- ~60% absolute diffraction efficiency over wide band
- High efficiency per order
- Low surface roughness
- Measure smoother facets over larger areas to approach 100% groove efficiency

OPG Spectral Resolving Power

- MSFC Stray Light Facility (SLF)
 - 6^{th} order Al $K\alpha_1$ and Al $K\alpha_2$
 - Resolving power \sim 3900 ($\lambda/\delta\lambda$)
 - After removing contributions from source size and natural line widths
 - Small format grating, 25 x 32 mm
 - Laminar groove profile (no blaze)
 - Partial illumination
 - Recent SLF test on large format grating (75 x 96 mm)
 - Resolution limited to ~900
 - Fabrication errors need to be addressed

OPG Alignment

- Optical alignment methods have been developed at PSU and SAO
- Modules have been aligned, performance tested and environmentally tested at full NASA GEVS levels, e.g.
 - Vibe Qualification
 - ¼ G sine sweep
 - 14.1 G RMS: Steps = [3, 5, 7.1, 10, 14.1] 2
 dB per step, hold each step 20 sec, hold
 14.1 G for 60 seconds
- Should consider several factors for LSF error budget
 - Astigmatism, period error, alignment (plates and modules), and thermal

Critical Angle

- CAT grating combines advantages of transmission gratings (relaxed alignment, low weight) with high efficiency of blazed reflection gratings.
- Blazing achieved via reflection from grating bar sidewalls at graze angles below the critical angle for total external reflection.
- High energy x rays undergo minimal absorption and contribute to effective area at focus.

tings (MIT)

quation:

 $sin(\theta) + sin(\beta_m)),$ tion order

 $\beta_m \sim \theta$

ectivity:

ritical angle of

1: ating, $\theta = 1.5^{\circ}$ m

tio d/b = 150

200 nm pitch CAT grating bars

Recent Results 0.60 0th (6 um) model (6 um) 0.50 32x32 mm (4 um) Sample 3 absolute diffraction efficiency 0.40 Uniform Diffraction Efficiency Across Large Grating 0.35 0.30 0.3 0.20 0.4 0.25 0.35 0.10 diffraction efficiency 0.3 0.2 0.25 0.00 0.2 0 0.15 0.15 0.1 0.05 0.1 0 15 -15 10 -10 0.05 -5 -10 mm -15 10 mm 15 -20 32 mm x 32 mm

No Measurable Loss of Resolving Power

Pt-coated CAT gratings with GSFC slumped glass mirror pair: R > 11,000 in 18th order at 0.834 nm

- R ~ 24,000 in 18th order (best fit) and R > 11,700 (95% confidence) with ~ 1" mirror LSF (GSFC slumped glass P&H pair).
- R ~ 3100 in 9th order with first 12m-focal length SPO with ~ 2.5" optic LSF (Arcus MIDEX proposal).
- Survived shake&bake.

Grating Trades and Needs

Many details depend on focal length and array coverage

Trades

- What is performance metric for each science goal?
 - Does more effective area or more resolving power make sense in each case?
- Effective area vs. resolving power
 - Telescope coverage (vs. subaperture effect)
 - Higher energy throughput vs. high blaze angle
- Detector considerations
 - High order vs. detector energy resolution
 - One readout vs. two

detection strong lines,
$$W \gg \tilde{\Delta}E$$
: $M_{\ell} = \sqrt{\sum_{i=1}^{n} A_i}$,

detection weak lines,
$$W \ll \tilde{\Delta}E$$
: $M_{\ell} = \sqrt{\sum_{i=1}^{n} \frac{A_{i}}{\Delta E_{i}}}$

velocity strong lines,
$$W \gg \tilde{\Delta} E$$
: $M_{\rm v} = \sqrt{\sum_{i=1}^n \frac{E_i^2 A_i}{(\Delta E_i)^2}}$

velocity weak lines,
$$W \ll \tilde{\Delta}E$$
: $M_{\rm v} = \sqrt{\sum_{i=1}^n \frac{E_i^2 A_i}{(\Delta E_i)^3}}$

Jelle Kaastra for IXO

Needs

- IDL needs: CCD readout camera, grating array mechanism, mechanical and thermal tolerances, pointing, mass, power, cost
- Technology development roadmap: SAT grants; deeper gratings, larger gratings, smaller supports, mounting and alignment schemes, coating with metals
- Other needs: Ray-tracing for resolving power and area error budgets

Off-Plane Gratings (OPGs)

- Offer very high diffraction efficiency and high spectral resolving power
- Individual grating elements aligned into a grating module then integrated into a grating array behind the optics
- Require dedicated detector

Critical Angle Transmission Gratings (MIT)

Advantages:

- low mass
- transparent at higher energies
- relaxed alignment & figure tolerances

Sub-aperture

Full aperture

- high diffraction efficiency
- demonstrated R > 10,000

- Gratings, camera, and focus share same Rowland torus.
- Blazed gratings; only orders on one side are utilized (smaller detector).
- Only fraction (50%) of mirrors is covered: "sub-aperturing" boosts spectral resolution.

